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Abstract
We consider a harmonically trapped and strongly driven electron in a one-
dimensional (1D) quantum wire. A set of exact complete solutions of the time-
dependent Schrödinger equation is constructed, which shows the properties of
generalized squeezed coherent states. The corresponding probability densities
behave like some breathing and oscillating wave-packet-trains. The resonance
ladders of the expectation energy are found and the transition probabilities
between two stationary states are exactly calculated. The results reveal that the
quantum motions of the considered system can be controlled by adjusting the
laser driving field.

PACS numbers: 03.65.Ge, 73.22.Dj, 68.65.Fg, 03.65.Db

1. Introduction

Recently, the development of ultrahigh-intensity lasers [1] has led to increasing study of
the particles driven by a strong field with high frequency. The process of high-harmonic
generation (HHG) due to an intense atom–field interaction has received substantial attention
in recent years [2], and harmonically generated coherent x-ray transients have been predicted
and indeed are beginning to be observed [3]. In a strong laser field, the stabilization of
the system was predicted theoretically [4–6] and has been verified experimentally [7, 8].
We know that the physical phenomena with a strong field are very different from those
with a weak field, and the mathematical treatments for the former cannot use the traditional
perturbation theory [9]. Therefore, a reliable and accurate theoretical procedure must be
developed in the study involving a strong field. For the high-frequency driving fields, the
approximate method of Kramers–Henneberger (KH) oscillating frame representation [10] has
been employed to effectively describe some physical systems [11–14]. The Floquet theory [15]
also had some success in treating the dynamics of the systems. For example, in the treatment
of the system with homogeneous oscillating potential V (t) = V0 cos(ωt), the Floquet theory
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is straightforward, and has been well studied during the past decade [16]; the time-dependent
dipole-type potential, V (x, t) = eF1x cos(ωt), which appears in some experimental setups
has also been investigated by using the Floquet theory [17–19]. The Green’s function method
was applied to treat the quantum transition of a harmonically trapped particle in the strong
external field of the same form [20]. With the loss of validity of perturbation techniques, it is
very important to get a set of exact solutions [19, 21–23] for the considered systems. Recently,
the studies on the matter wave packet stimulated many people’s interest [24], especially in the
controlling of the wave packet [25].

In this paper, we consider a 1D harmonically trapped electron interacting with a strong
external field in the form [ε0x + ε1x cos(�t)] [13, 26], and construct a set of exact solutions of
the time-dependent Schrödinger equation by the analytical method [21]. We shall apply
the analytical solutions to exactly treat some interesting physical problems, such as the
properties of generalized squeezed coherent states, resonance ladders of the expectation
energies, and quantum transitions between two stationary states. In particular, we will illustrate
the controlling of the probability wave-packet-train.

The outline of this paper is as follows. In section 2, we obtain a set of analytic solutions of
the system, which describe the probability wave-packet-train consisting of n + 1 breathing and
oscillating packets. We discuss some physical properties making use of the exact quantum
states, such as the expectation values of position and momentum, which agree with the
classical orbit of a driven oscillator and its classical momentum, respectively. The interesting
properties of squeezed coherent states are illustrated, which periodically vary with time. It
is shown that the average energy of the electron in the exact quantum states is composed of
classical and quantum parts, which is different from the energy of any known coherent state
[27]. In section 3, we discuss the quantum transition and resonance ladders via the exact
solution. First, we calculate exactly the transition probability between two stationary states
under the laser field, and confirm the agreement with Landovitz’s result obtained by using the
Green’s function method [20]. Then we illustrate the average energy for the resonance and
non-resonance cases. The resonance ladders of the expectation energy are found, which tell us
how the energy evolutes with time in a resonance transition process. In section 4, we discuss
how to realize the controlling of a single electron wave-packet-train by using the external field.
We seek the relationship between the centre position of the wave-packet-train and controllable
parameters, and find that with the increase of the laser frequency, the oscillating amplitudes
of the wave packets become smaller and smaller. However, when we increase the intensity of
laser field, the oscillating amplitudes become larger and larger. Similarly, the static electric
field strength can affect the centre position of the oscillation. Therefore, by adjusting the laser
field and static electric field, we can easily control the wave-packet-train theoretically. Finally,
in section 5, we make some concluding remarks.

2. Exact quantum states of the trapped and driven electron

We consider a harmonically trapped and strongly driven electron in a one-dimensional (1D)
quantum wire along the x direction. The harmonic potential is generated by a magnetic
field and the time-dependent dipole-type potential is produced by a laser field [13, 26]. The
time-dependent Schrödinger equation governing the motion of the electron reads

i
∂�

∂t
= −1

2

∂2�

∂x2
+

1

2
x2� + ε(t)x�, (1)

where ε(t) = ε0 + ε1 cos(�t) denotes the driving field with ε0 being the normalized strength
of the static electric field, and ε1 and � are the normalized strength and frequency of the laser
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field. Let m,C and ω = eB/(2Cm) be the electron mass, light speed and cyclotron frequency
of the magnetic field B, respectively. In equation (1) we have adopted the natural units with
m = h̄ = ω = 1 such that the spatial coordinate x and time t are in units of the harmonic
oscillator length � = √

h̄/(mω) and inverse frequency ω−1, the laser frequency is normalized
by ω and the magnetic and laser potentials are normalized by h̄ω, respectively.

Applying the well-known technique for solving the time-dependent Schrödinger
equation [21], we construct the n + 1 exact solutions of equation (1) as (see the appendix)

�n(x, t) = Rn(x, t) ei�n(x,t), n = 0, 1, 2, 3, . . . , (2)

where the real functions Rn(x, t) and �n(x, t) read

Rn(x, t) =
( √

k0√
π2nn!ρ(t)

) 1
2

Hn(ξ) exp

(
−1

2
ξ 2

)
, (3)

�n(x, t) = −
(

1

2
+ n

)
θ + b2x +

ρ̇

2ρ
x2 +

1

2

∫ (
b2

1 − b2
2

)
dt, (4)

with Hn(ξ) being the Hermite polynomial of the spacetime variable

ξ(x, t) =
√

k0

ρ(t)
x − b1(t)ρ(t)√

k0
. (5)

In equations (3)–(5), the real functions ρ(t), θ(t), b1(t) and b2(t) have the forms

ρ(t) =
√

ϕ2
1 + ϕ2

2 , θ(t) = arctan

(
ϕ1

ϕ2

)
, (6)

b1 = 1

ρ2

[
ϕ1(t)

∫ t

ε(t)ϕ2(t) dt − ϕ2(t)

∫ t

ε(t)ϕ1(t) dt + br
0ϕ1(t) + bi

0ϕ2(t)

]
, (7)

b2 = 1

ρ2

[
−ϕ1(t)

∫ t

ε(t)ϕ1(t) dt − ϕ2(t)

∫ t

ε(t)ϕ2(t) dt + bi
0ϕ1(t) − br

0ϕ2(t)

]
, (8)

where ϕi are the periodic functions, ϕ1 = A cos(t + α), ϕ2 = B cos(t + β), while
A,B, α, β, br

0, b
i
0 and k0 = AB sin(α − β) are the constants to be determined by the form of

the initial state. In order to maintain the independence between ϕ1 and ϕ2, we need α �= β at
any case. It is worth noting that ρ(t) and θ(t) do not depend on the external potential, and
only b1(t) and b2(t) are determined by the external potential.

The exact solutions are n+1 complete solutions with some arbitrary constants and obey the
orthonormalization condition 〈�n | �n′ 〉 = δn,n′ . They describe the motion of the trapped and
driven single electron. When the different system parameters in a wide range of parameters are
taken, we can get some different kinds of quantum states, which can be used to treat various
physical problems. For example, when A = B = √

k0, α = 0 and β = −π
2 are set, we get

the wavefunction with ξ = x − b1(t), that contains the known results reported in [22, 28, 29].
Because of the property of the orthonormalization, the solution in equation (2) can serve as a
complete basis to investigate more physical systems, say the Bose–Einstein condensate held
in the harmonic potential [21].

According to the property of the Hermite polynomial Hn(ξ), the probability density
R2

n(x, t) describes the wave-packet-trains consisting of n+1 Gaussian wave packets. Noticing
equation (7), the orbit of the centre of the wave-packet-train xc(t) is given by setting ξ = 0 in
equation (5) as

xc(t)= ρ2(t)b1(t)

k0
= 1

k0

[
ϕ1(t)

∫ t

ε(t)ϕ2(t) dt − ϕ2(t)

∫ t

ε(t)ϕ1(t) dt + br
0ϕ1(t) + bi

0ϕ2(t)

]
.

(9)
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This is just the classical orbit of the driven harmonic oscillator. Combining the time functions
ϕ1(t), ϕ2(t) and ε(t), we know that the centre of the wave-packet-train oscillates periodically
with time. The function ρ(t) in equation (3) can be called the function of width and height of
the wave-packet-train [21]. When α = 0, β = −π/2, A = B are set, ρ(t) is a constant, which
means that the width and height of the wave-packet-train do not change with time. In the
other case, the function ρ(t) periodically varies with time that will cause the corresponding
changes of the widths and heights of wave-packet-train, which is identified with the so-called
breathing of wave packets [30].

Combining equation (2) with equations (3)–(5), we get the initial states of the system as

�n(x, 0) =
( √

k0√
π2nn!ρ(0)

) 1
2

Hn[ξ(x, 0)] e− 1
2 ξ 2(x,0) ei�n(x,0), n = 0, 1, 2, 3, . . . . (10)

In equation (10), when the parameters are selected as α = 0, β = −π
2 , A = B = 1, bi

0 = 0,

br
0 = ε1

2 (resonance case) and br
0 = ε1

1−�2 (non-resonance case), we get ρ(0) = √
k0 = 1 and

b1(0) = b2(0) = 0 from equations (6)–(8), which lead to the initial state becoming the
well-known energy-eigenstate �n(x, 0) = ψn(x) of a harmonic oscillator. Obviously,
the case n = 0, ρ(0) = √

k0 = 1 and b1(0) �= 0 implies �0(x, 0) = ψ0(x − b1(0)) to
be the usual coherent state. The same parameters and nonzero n mean that the initial states
are generalized coherent states with multiple wave packets, which contain rich information
for different parameters.

Now we calculate the expectation values of the coordinate and momentum under the
exact quantum states of equation (2). Applying the relationships between the exact quantum
states [21]

ξ�n =
√

n

2
e−iθ�n−1 +

√
n + 1

2
eiθ�n+1,

2ξ 2�n =
√

n(n − 1) e−2iθ�n−2 + (2n + 1)�n +
√

(n + 1)(n + 2) e2iθ�n+2,

1

Hn

∂Hn

∂ξ
�n = 2n

Hn−1

Hn

�n =
√

2n e−iθ�n−1

(11)

and employing Dirac’s symbols, ket and bra, we can easily arrive at the expectation values

x̄ = 〈�n | x̂ | �n〉 = ρ2(t)b1(t)

k0
,

p̄ = 〈�n | p̂ | �n〉 = b2(t) + b1(t)ρ̇(t)ρ(t)/k0 = ˙̄x,

x̄2 = 〈�n | x̂2 | �n〉 = k−1
0 ρ2(t)

[
n +

1

2
+

ρ2(t)b2
1(t)

k0

]
,

p̄2 = 〈�n | p̂2 | �n〉 =
[
ρ̇2(t)

k0
+

k0

ρ2(t)

] (
n +

1

2

)
+ b2

2(t)

+
b2

1(t)ρ̇
2(t)ρ2(t)

k2
0

+
2b1(t)b2(t)ρ̇(t)ρ(t)

k0
.

(12)

Interestingly, we find that the expectation value of position in equation (12) is equal to the
centre coordinate of the wave-packet-train in equation (9), and the expectation momentum is
its time derivative. Therefore, the expectation ‘quantum orbit’ agrees with the corresponding
classical orbit, which demonstrates a good classical-quantum correspondence.
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Figure 1. The time evolution of squeezed parameters for (a) the position squeezed parameter
and (b) the momentum squeezed parameter. The solid lines are associated with the parameters
n = 0, A = 2, B = 5, α = π/3 and β = −π/6, and the dashed lines correspond to the parameters
n = 0, A = 1, B = 7, α = π/6 and β = −π/10. The spacetime variables x and t are normalized
in units of � and ω−1.

From equation (12) we get the variations of position and momentum as

�x(t) = (x2 − x̄2)
1
2 = ρ(t)√

k0

√
n +

1

2
,

�p(t) = (p2 − p̄2)
1
2 =

√[
ρ̇2(t)

k0
+

k0

ρ2(t)

]√
n +

1

2
.

(13)

It is well known [27] that for the dimensionless x and p the energy eigenstates of a harmonic

oscillator are associated with �x = �p =
√

n + 1
2 , and under the coherent state of the

harmonic oscillator we have �x = �p = 1√
2
. From equation (13), we find that under the

exact states in equation (2) of the driven harmonic oscillator, �x and �p vary with time.
However, they are independent of the time-dependent external field, since the function ρ(t)

governing their time evolutions does not depend on the external field. Note that a state is called
a squeezed state [31] if the variations satisfy �x < 1√

2
or �p < 1√

2
. Letting the squeezing

parameter be Vs(t) = √
2�S(t) for (S = x, p), we define the instantaneous squeezing states

which obey VS(t) < 1 at some time t. The time-dependent squeezing property is illustrated
in figure 1. In figure 1, we see the periodical behaviour of the squeezing parameter Vs . The
oscillating amplitude is determined by the parameters A and B, and the oscillating phase
depends on the parameters α and β. When we adjust the system constants A,B, α, β, we
can get a series of interesting squeezed coherent states, and the squeezing parameters Vs

periodically vary with time and depend on the amplitudes and phases. Given equation (13),
the Heisenberg uncertainty relation becomes

�x(t)�p(t) =
√[

ρ̇2(t)ρ2(t)

k2
0

+ 1

] (
n +

1

2

)
�

(
n +

1

2

)
. (14)

This general relation contains the harmonic case �x(t)�p(t) = (
n + 1

2

)
for the parameters

α = 0, β = −π
2 , A = B. When n = 0 and ρ = constant are set, from equation (14) we

arrive at the minimum uncertainty of the usual coherent state, namely �x(t)�p(t) = 1
2 . The

conclusion about the squeezed coherent state is similar to the result in [32, 33].
The phase �n(x, t) of the wavefunction in equation (4) is a complicated time-space

function, which is directly related to the average energy of the system. We now calculate
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the average energy under the quantum-mechanical definition [27], En = 〈�n | i ∂
∂t

| �n〉 =
−〈�n | �̇n | �n〉. Combining equations (6)–(8) and (12), we get the expectation value of
energy

En =
(

k1

k0

) (
n +

1

2

)
+

p̄2

2
+

x̄2

2
+ x̄ε(t), (15)

where k1 = [
ρ̇2(t) + k2

0

/
ρ2(t) + ρ2(t)

]/
2 is a constant. It is quite interesting that the

time-dependent average energy in equation (15) is composed of classical and quantum parts,
which is different from the expectation energy of the known coherent state [27]. The time-
dependent external field can influence the classical part of average energy, since the former
contains the external potential ε(t). However, the external field does not affect the quantum
part of the energy. From equation (15) we easily get the adjacent energy level spacing
�E = En+1 − En = (

k1
k0

)
, which is a constant determined by the system parameters k0 and

k1. When we take the parameters as α = 0, β = −π
2 , A = B = 1, to make k0 = k1 = 1,

the quantum level becomes the well-known one of the stationary state harmonic oscillator,
�E = 1(h̄ω). In the viewpoint of quantum mechanics, the electron can transit between the
different quantum states, and this will be discussed in detail as follows.

3. Transition probabilities and energy ladders

For simplicity, we do not consider the effect of the static electric field to the transition
probability. When the zero static electric field is considered, the system becomes a harmonic
oscillator interacting with a laser field V (x, t) = xε1 cos(�t). Applying such a field to
the above-mentioned formulae, we directly get the exact quantum states of the system. For
a weak laser field with small strength we know that the quantum transition can be treated
approximately by using the quantum perturbation theory [27]. When the laser field is strong
enough, we cannot use the traditional perturbation theory and must seek the effective non-
perturbation methods, such as the Green’s function method [20] and the exact-solution method.
In fact, once the exact solutions are given, we can directly calculate the transition probabilities
between the stationary states. To do this, we expand the exact quantum states �n(x, t) by
adopting the energy eigenstates of harmonic oscillator as

�n(x, t) =
∑
m

Cn,m(t)ψm(x). (16)

As an example, we take the parameter set as α = 0, β = −π
2 , A = B = 1, bi

0 = 0, br
0 = ε1

2
(resonance case), and br

0 = ε1
1−�2 (non-resonance case) so that equations (6)–(8) give

ρ = 1, b1(0) = b2(0) = 0, and the initial state �n(x, 0) just becomes the energy eigenstate of
harmonic oscillator

�n(x, 0) = ψn(x) = NnHn(x) exp
[− 1

2x2
]
, (17)

where x is the dimensionless coordinate and Nn = (
1√

π2nn!

) 1
2 is the normalization constant.

After multiplying both sides of equation (16) by ψm′(x), we integrate this equation to obtain
the transition amplitude from state n to state m as

Cn,m(t) =
∫ +∞

−∞
dx ψ∗

m(x)�n(x, t), (18)

with the initial value Cn,m(0) = δn,m. In the computation, the orthnormalization condition
of equation (17),

∫ +∞
−∞ ψm′(x)ψm(x) dx = δm,m′ , has been employed. Consequently, the

corresponding transition probability reads

Pn,m(t) = |Cn,m(t)|2. (19)
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Figure 2. (a) The time evolutions of transition probabilities from equations (2), (17), (18) and (19)
for the resonance case � = 1(ω) with the laser strength ε1 = 0.9. The solid line expresses the
probability P0,1(t) from n = 0 state to m = 1 state. The dotted line and long-dashed line represent
P0,4(t) and P0,9(t), respectively. (b) The corresponding results Pn,m(t) for n = 1,m = 2, 5, 10
and the same parameters as in (a). (c) The transition probability P1,2(t) for two different values
of laser strengths. The solid line is associated with ε1 = 20, and the dotted line with ε1 = 50.
The spacetime variables x and t are normalized in units of � and ω−1, and the laser potential ε1x

is normalized in units of h̄ω.

By applying the exact solution in equation (2) with the initial state �n(x, 0) = ψn(x) to
equations (18) and (19), we can exactly compute the transition probability Pn,m(t) induced by
the time-dependent laser field.

For the resonance case � = 1(ω), the numerical results are shown in figures 2(a) and
(b), where the laser strength is taken as ε1 = 0.9. In figure 2(a) the transition probability
P0,1(t) indicated by the solid line shows that its peak corresponds to the time t = π . The
plots of probabilities P0,4(t) and P0,9(t) indicate the time associated with their peak values to
be t = 2π and t = 3π . However, when n = 1 is considered, the time corresponding to the
probability peaks shows small deviations from the integer times of π , as in figure 2(b). In
figure 2(c), we show the transition probability P1,2(t) for the stronger laser fields. The solid
curve corresponds to ε1 = 20 and the dotted curve to ε1 = 50. All these plots show that the
transition probabilities Pn,m(t) tend to zero as t → ∞. In particular, when we increase the
laser strength as in figure 2(c), the curves are translated towards the left and the transition
probabilities approach zero earlier. The very small Pn,m(t) and the normalization condition∑∞

m=1 Pn,m(t) = 1 mean that all the infinite components in the state of equation (16) cannot
be neglected at t = ∞ for the resonance case. Simultaneously, the resonance leads the centre
position in equation (9) of the wave-packet-train to infinity, indicating the loss of stability. The
resonance loss of stability is therefore the reason of the transition from the initial state to any
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Figure 3. The time evolution of transition probability P1,2(t) in the non-resonance case for the
parameters (a) � = 5, ε1 = 15; (b) � = 5, ε1 = 30 and (c) � = 10, ε1 = 15. The same units as
in figure 2 are used.

final state. These results approximately agree with the corresponding results obtained by the
Green’s function method [20]. Although there may be some small differences between them,
our results from the exact solution are more accurate. In particular, the comparison between
our exact results and that from quantum perturbation theory shows that the selection rule [27]
� − ω = ±1(ω) of transitions is no longer valid for the strong field case.

For the non-resonance case � �= 1(ω), we can also directly calculate the transition
probabilities with our exact solutions. In figure 3, we plot the transition probability P1,2(t) for
the different laser frequencies and amplitudes. The results of the non-resonance case indicate
that the transition probability P1,2(t) periodically evolves and never permanently vanishes
all the time. For the larger laser strengths, the maxima of transition probabilities can reach
the value of the resonance peaks in figure 2. This is an important multiphoton effect. A
comparison between figures 3(a) and (c) shows that using the larger frequency difference
� − ω can produce more probability peaks.

We now numerically illustrate the average energy from equation (15) for the given
parameters below equation (16). Inserting such parameters and resonance frequency � = 1(ω)

into equations (6)–(8), (12) and (15) produces ρ2 = k0 = 1, x̄ = b1(t) = 1
2ε1[cos t − cos3 t −

sin t (t + sin t cos t)], p̄ = ˙̄x = − 1
2ε1(t cos t + sin t) and En(t) = n + 0.5 + ε2

1(0.0625 +
0.125t2 − 0.0625 cos(2t) − 0.125t sin(2t)). In figure 4, we plot the time evolutions of
average energies E0 and E1 for (a) the resonance case and (b) the non-resonance case,
respectively. In the resonance case, we find that there exist some interesting plateaus of the
energy curves as in figure 4(a), which are similar to the spatial ladders of the Wannier–Stark
potential [34]. The centres of energy ladders appear at t = πk for k = 0, 1, 2, 3, . . . , where
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Figure 4. (a) The time evolution of average energy for the resonance case with parameters
� = 1, ε1 = 0.9. The solid line stands for the average energy E0(t) of ground state, the dotted line
denotes the average energy E1(t) of first excited state and the long-dashed lines indicate the centres
of energy ladders, E0(πk) = 0.5 + k2, which appear at t = πk for n′ = k2, k = 0, 1, 2, 3, . . . .

(b) The ground-state energy E0(t) of thenon-resonance case with parameters (1) � = 5, ε1 = 30;
(2) � = 5, ε1 = 15; (3) � = 10, ε1 = 15. The same units as in figure 2 are used.

Ėn(t) = 1
4ε2

1t[1 − cos(2t)] = 0. The resonance ladders of average energy are caused by
the classical part of equation (15); however, the energy values of the plateaus centres satisfy
the quantized relationship En(πk) = n + 0.5 + 0.125π2k2ε2

1 for k = 1, 2, 3, . . . . From this
formula we can see that when the laser strength is set as ε1 = √

8/π , the values of energy
ladders obey En(πk) = n + 0.5 + k2 for t = πk with k = 0, 1, 2, 3, . . . . In figure 4(a) we
show the instances of ε1 = √

8/π ≈ 0.9 for n = 0, 1. In the non-resonance case � �= 1(ω),
the average energy periodically varies with time as in figure 4(b). A comparison between
figures 4(a) and (b) exhibits that in both cases there may exist the local minima of average
energy appearing at the times t = πk for k = 0, 1, 2, 3, . . . . But only in the resonance case
does the energy unceasingly increase with time, which leads to the energy ladders and the
possible transitions between the ladders. Combining figure 4(a) with figure 2(a) shows that
for the initial ground state the centres of energy ladders correspond to the maxima of transition
probabilities.

It is interesting for us to analytically investigate the relationship between the transition
probability and average energy. This relationship can be easily obtained by substituting the
wavefunction of equation (16) into the formula of average energy,

En = 〈�n(x, t) | Ĥ | �n(x, t)〉

=
∑
m

(
m +

1

2

)
Pn,m(t) +

ε1 cos(�t)√
2

∑
m

Cn,m(t)

×
∑
m′

Cn,m′(t)(
√

m′δm,m′−1 +
√

m′ + 1δm,m′+1). (20)

This form differs from that of equation (15). It exhibits the relationship between the average
energy and transition probability more clearly than the latter. For example, it points out
the possibility that the resonance ladders of average energies do not exactly correspond with the
local maxima of transition probabilities for the n �= 0 case. This conclusion agrees with the
numerical results given in figures 2(b) and 4(a).
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Figure 5. (a) The time evolution of centre position xc of wave-packet-train for the resonance case
� = 1(ω), where ε0 = 0.02, ε1 = 0.05. (b) The time evolution of xc in the non-resonance case
for the parameter sets (1) � = 5, ε0 = 0.02, ε1 = 0.05; (2) � = 5, ε0 = 0.02, ε1 = 0.08 and
(3) � = 8, ε0 = 0.02, ε1 = 0.05. (c) The time evolution of xc in the non-resonance case for (1)
� = 5, ε0 = 0.02, ε1 = 0.05 and (2) � = 5, ε0 = 0.03, ε1 = 0.05. The same units as in figure 2
are used.

4. Controlling the wave-packet-train of the system

The control of the wave-packet-train has an important meaning for controlling the motion of
the electron and performing the quantum computations [25]. In this section, we discuss how
to realize the control of the single electron wave-packet-train by adjusting the external field
parameters. We know that the exact solution (2) represents a single electron wave-packet-train,
and the centre position xc of the wave-packet-train is described by equation (9). The external
field parameters (ε0, ε1,�) implied in equation (9) can affect the motion of the centre of
wave-packet-trains. To illustrate the effect of the external field on the wave-packet-train, the
numerical results are shown in figures 5 and 6. In figure 5, we display the time evolution of
centre orbit of the wave-packet-train for different external field parameters. For simplicity, we
have taken the solution constants as br

0 = bi
0 = 0, α = 0, β = −π

2 , k0 = 1, A = B = 1.
In figure 5(a) we show the resonance motion of the centre orbit xc, where the oscillating

amplitude becomes larger and larger. The resonance will lead to the loss of stability and the
occurrence of transitions between different states. For the non-resonance case as in figures 5(b)
and (c), we find that the centre orbit xc oscillates periodically with time. By curves (1) and (2)
of figure 5(b) we illustrate that increasing the laser strength ε1 will lead to the increase of the
amplitude. The comparison between curves (1) and (3) of figure 5(b) exhibits that the increase
of frequency � can decrease the amplitude and period of the orbit xc. In figure 5(c), we give
the time evolution of centre position of the wave-packet-train for the different electric field
strengths ε0. The comparison between curves (1) and (2) exhibits that the equilibrium positions
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Figure 6. The spatial distribution of the probability density at the time t = π
4 . The external field

parameters are set as (a) � = 1.001, ε0 = 0.02, ε1 = 0.05 and (b) � = 100, ε0 = 0.02, ε1 = 0.05.
The same units as in figure 2 are used.

xe of the wave-packet oscillation depend on the values of electric field strength, which just
obey xe = −ε0. Thus we can control the amplitude, period and equilibrium positions of the
wave-packet oscillations by adjusting the external field parameters (�, ε1, ε0).

We now investigate the dependence of the spatial distribution of the probability density
R2(x, t) on the external field parameters. From figure 5 we have seen that for a set of different
parameters the centre positions of the wave-packet-train may be different at a fixed time. In
figure 6, we plot the spatial distribution for two different laser frequencies at t = π

4 . The
comparison between figures 6(a) and (b) shows that increasing the frequency causes the
translation of the wave-packet-train R2

(
x, π

4

)
towards the left for the considered time. Similar

translations can occur when the strength ε1 or ε0 is changed. However, in any case the shape
of the wave-packet-train is kept. Therefore, by using the external fields we can control only
the position of the wave-packet-train. Such control, of course, is useful for performing the
quantum logic operations [25, 36].

5. Discussion and conclusion

In summary, we have studied a harmonically trapped and strongly driven electron in a
1D quantum wire. By using the exact complete solutions of the system, we revealed the
feature of generalized squeezed coherent states in which there exists the classical-quantum
correspondence between the classical orbit and quantum expectation orbit. The spacetime
evolutions of probability densities showed a breathing and oscillating wave-packet-train.
It is illustrated numerically and analytically that the oscillation amplitude, frequency and
equilibrium position of the wave-packet-train can be controlled by adjusting the external
fields. Given the exact solution, we calculated exactly the transition probabilities between
two stationary states that result in small improvement to the results of Landovitz by using
the Green’s function technique [20]. The time evolution of average energy in the transition
process was illustrated for the resonance and non-resonance cases. The numerical plots exhibit
the resonance ladders of the expectation energy, which are similar to the spatial ladders of
the Wannier–Stark potential [34]. The centres of energy ladders correspond to some local
maxima of the transition probability and some quantum levels of the stationary state harmonic
oscillator.

The resonance ladders of energy depend on the laser strength and interaction time,
which hint to us how to control the resonance transitions accurately and timely. For example,
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figures 2(a) and 4(a) indicate that for the initial ground state the centres of energy ladders
correspond to the maxima of transition probabilities. Therefore, one can realize the transitions
from the ground state of a harmonic oscillator with energy E0 = 0.5 to the excitation states
with Ek2 = 0.5 + k2 for k = 1, 2, . . . , by turning on the laser of strength ε1 ≈ 0.9 at t = 0 and
turning off it at t = πk. Once the laser is turned off, the energy of equation (15) becomes an
invariant such that the system is kept in the final state. If the interactions are set in succession
and the interaction time �t satisfies π � �t < 2π, the quantum transitions will occur one
after another, respectively from state n = 0 to n = 1, from n = 1 to n = 2 and so on. This
seems to be in agreement with the usual transition rule of the harmonic oscillator. Such control
is probably helpful for performing the quantum computations [25, 36].

Finally we note that the solution and the results based on it can be easily extended to the
case of harmonically confined and strongly driven ions in a 1D Paul trap [36–38], where such
results may be checked experimentally.
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Appendix. Derivation of the exact solution

Following [21], we set the test solution of equation (1) as

�n = an(t)Hn(ξ) exp[b(t)x − c(t)x2 − f 2(t)/2], ξ = e(t)x − f (t), (A.1)

where a(t), b(t) and c(t) are the complex functions of time and e(t), f (t) are the real ones.
Applying equation (A.1) to equation (1), we get

e2 ∂2Hn(ξ)

∂ξ 2
+ 2[(be − iḟ ) + (iė − 2ec)x]

∂Hn(ξ)

∂ξ
+ [2(2c2 − iċ − 1/2)x2

+ 2(iḃ − 2bc − ε(t))x + 2(iȧn/an − if ḟ − c + b2/2)]Hn(ξ) = 0. (A.2)

Comparing this with the Hermite equation ∂2Hn

∂ξ 2 − 2ξ ∂Hn

∂ξ
+ 2nHn = 0 yields

2iċ = 4c2 − 1, (A.3)

iė = 2ce − e3, (A.4)

iḃ = 2bc + ε(t), (A.5)

be = e2f + iḟ , (A.6)

i
ȧn

an

= if ḟ + c − b2/2 + ne2. (A.7)

Equation (A.3) is a complex Riccati one, which is associated with the harmonic oscillator
equation

ϕ̈ = −ϕ, (A.8)

through the function transformation c = ϕ̇

2iϕ . Let the real and imaginary parts of ϕ be ϕ1 and
ϕ2, respectively. They satisfy equation (A.8) and possess the similar solutions

ϕ1 = A cos(t + α), (A.9)

ϕ2 = B cos(t + β), (A.10)
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where A,B, α and β are the constants related to the initial conditions of system. Therefore,
the general solution of equation (A.8) reads

ϕ = ϕ1 + iϕ2 = ρ(t) eiθ(t), (A.11)

where

ρ(t) =
√

ϕ2
1 + ϕ2

2 , (A.12)

θ(t) = arctan

(
ϕ2

ϕ1

)
. (A.13)

Going back to the function transformation between c and ϕ produces

c = ϕ̇

2iϕ
= θ̇

2
− i

ρ̇

2ρ
. (A.14)

Substituting equation (A.11) into equation (A.8) yields the equations of the amplitude and
phase as

θ̈ = −2θ̇ ρ̇

ρ
, (A.15)

ρ̈ = ρθ̇2 − ρ, (A.16)

with the first integration constants

k0 = ρ2θ̇ = ϕ1ϕ̇2 − ϕ2ϕ̇1 = AB sin(α − β), (A.17)

k1 =
(

ρ̇2 +
k2

0

ρ2
+ ρ2

)/
2. (A.18)

Substituting equation (A.14) into equation (A.4), we get

e(t) =
√

k0

ρ
=

√
θ̇ . (A.19)

We have set the function e(t) as a real function, so the constant k0 in equation (A.19) is a
positive one. Inserting equation (A.14) into equation (A.5), we arrive at the complex function

b = b1 + ib2 = 1

ϕ

[
−i

∫
ε(t)ϕ dt + b0

]
, (A.20)

where b1 and b2 are the corresponding real and imaginary parts of b. Also dividing b0 into the
real part br

0 and imaginary part bi
0, and applying equations (A.9)–(A.11), we obtain

b1 = 1

ρ2

[
ϕ1(t)

∫
ε(t)ϕ2(t) dt − ϕ2(t)

∫
ε(t)ϕ1(t) dt + br

0ϕ1(t) + bi
0ϕ2(t)

]

= 1

ρ2
AB cos(t + α)

{
ε0 sin(t + β) +

ε1 sin[(1 − �)t + β

2(1 − �)
+

ε1 sin[(1 + �)t + β]

2(1 + �)

}

+
1

ρ2
br

0A cos(t + α) − 1

ρ2
AB cos(t + β)

×
{
ε0 sin(t + α) +

ε1 sin[(1 − �)t + α]

2(1 − �)
+

ε1 sin[(1 + �)t + α]

2(1 + �)

}
+

1

ρ2
bi

0B cos(t + β),

(A.21)
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b2 = 1

ρ2

[
−ϕ1(t)

∫ t

ε(t)ϕ1(t) dt − ϕ2(t)

∫ t

ε(t)ϕ2(t) dt + bi
0ϕ1(t) − br

0ϕ2(t)

]

= − 1

ρ2
AB cos(t + α)

{
ε0 sin(t + α) +

ε1 sin[(1 − �)t + α]

2(1 − �)
+

ε1 sin[(1 + �)t + α]

2(1 + �)

}

− 1

ρ2
br

0B cos(t + β) − 1

ρ2
AB cos(t + β)

×
{
ε0 sin(t + β) +

ε1 sin[(1 − �)t + β]

2(1 − �)
+

ε1 sin[(1 + �)t + β]

2(1 + �)

}
+

1

ρ2
bi

0A cos(t + α).

(A.22)

Because f (t) is a real function, we easily derive the result

f = b1

e
= ρ(t)b1√

k0
, (A.23)

ḟ = eb2 =
√

k0b2(t)

ρ(t)
(A.24)

from equations (A.6), (A.19) and (A.20). The relationship between equations (A.23) and
(A.24) indicates that d

dt

(
b1(t)

e(t)

) = e(t)b2(t), which is just in agreement with equations (A.17)–
(A.22).

Finally, integrating equation (A.7), we directly get

an = An√
ρ

exp

[
−i

(
n +

1

2

)
θ +

i

2

∫ (
b2

1 − b2
2

)
dt

]
, (A.25)

where An is a constant to be determined from the normalization condition. Inserting
equations (A.14), (A.19)–(A.25) into equation (1) leads to the exact solution (2) with
equation (3), where the normalization condition

∫ |�|2 dx = 1 for giving the constant
An = [

√
k0/(

√
π2nn!)]1/2 has been used.
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